organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[2-(4-Fluorophenyl)furan-3-yl]pyridine

Bassam Abu Thaher,^a Pierre Koch,^b Dieter Schollmeyer^c and Stefan Laufer^b*

^aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, ^bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and ^cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany Correspondence e-mail: stefan.laufer@uni-tuebingen.de

Received 23 January 2009; accepted 29 January 2009

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.151; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_{15}H_{10}FNO$, the furan ring makes dihedral angles of 40.04 (11) and 25.71 (11)° with the pyridine and 4-fluorophenyl rings, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° with the 4-fluorophenyl ring. Non-conventional $C-H\cdots F$ and $C-H\cdots N$ hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For the biological activities of related compounds, see: Wilkerson *et al.* (1985); Myers *et al.* (1985).

Experimental

Crystal data C₁₅H₁₀FNO

 $M_r = 239.24$

Monoclinic, $P2_1/c$ a = 13.343 (9) Å b = 10.550 (3) Å c = 8.178 (5) Å $\beta = 94.44 (3)^{\circ}$ $V = 1147.7 (11) Å^{3}$	Z = 4 Cu K α radiation μ = 0.81 mm ⁻¹ T = 193 (2) K 0.26 × 0.19 × 0.12 mm
Data collection	
Enraf–Nonius CAD-4 diffractometer	1806 reflections with $I > 2\sigma(I)$ 3 standard reflections
Absorption correction: none	frequency: 60 min
2172 measured reflections	intensity decay: 2%
2172 independent reflections	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.052$	164 parameters
$wR(F^2) = 0.151$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
2172 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots F1^{i}$	0.95	2.32	3.006 (3)	128
C8−H8···N15 ⁱⁱ	0.95	2.60	3.483 (3)	155

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CORINC* (Dräger & Gattow, 1971); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors thank the Alexander von Humbolt Foundation (AvH) for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2859).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Nether-
- lands. Myers, M. J., Cherkofsky, S. C. & Haber, S. B. (1985). *Res. Discl.*, **253**, 223–224.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wilkerson, W. W., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 220–222.

supplementary materials

Acta Cryst. (2009). E65, 0458 [doi:10.1107/S1600536809003651]

4-[2-(4-Fluorophenyl)furan-3-yl]pyridine

B. Abu Thaher, P. Koch, D. Schollmeyer and S. Laufer

Comment

Diarylfuran carbinols and methanamines (Wilkerson *et al.* 1985) and diaryl-thio-substituted furans (Myers *et al.* 1985) have been considered to be potential anti-inflammatory or analgetic agents.

The analysis of the crystal structure of the title compound is shown in Fig. 1. The furan ring makes dihedral angles of 40.04 (11)° and 25.71 (11)° to the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° to the 4-fluorophenyl ring. Non-conventional C—H···X H-bonds seem to be effective in stabilization of the crystal structure. By intermolecular hydrogen bonds C5—H5···F1 (2.32 Å) and C8—H8···N15 (2.60 Å) a two-dimensional network parallel to the *ab* plane (Fig. 2) is formed.

Experimental

4-(4-Fluorophenyl)-4-oxo-3-(pyridin-4-yl)butanal (2.0 g) was treated with glacial acetic acid (10 ml), conc. HCl (30 ml) and then heated to reflux temperature for 4 h. The reaction mixture was cooled to r.t. and put into ice. A solution of K_2CO_3 was added until it became basic. The aqueous phase was extracted four times with ethyl acetate and the combined organic layers were dried over Na₂SO₄ and filtered. The remaining solution was concentrated *in vacuo* and then purified by flash chromatography (SiO₂, petroleum ether/ethylacetate 2:1 to 1:1) to give compound I (1.15 g) as a pale yellow solid. For X-ray suitable crystals of compound I were obtained by slow evaporation at 298 K of a solution of n-hexane–ethyl acetate–diethyl ether.

Refinement

H atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å. They were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 times of the U_{eq} of the parent atom.

Figures

Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Fig. 2. Partial crystal packing diagram of the title compound. The hydrogen bonds are shown with dashed lines. View along the c axis.

4-[2-(4-Fluorophenyl)furan-3-yl]pyridine

Crystal data	
C ₁₅ H ₁₀ FNO	$F_{000} = 496$
$M_r = 239.24$	$D_{\rm x} = 1.385 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 13.343 (9) Å	$\theta = 35-47^{\circ}$
<i>b</i> = 10.550 (3) Å	$\mu = 0.81 \text{ mm}^{-1}$
c = 8.178 (5) Å	T = 193 K
$\beta = 94.44 \ (3)^{\circ}$	Plate, colourless
$V = 1147.7 (11) \text{ Å}^3$	$0.26\times0.19\times0.12~mm$
<i>Z</i> = 4	
Data collection	

Enraf–Nonius CAD-4 diffractometer	$\theta_{max} = 70.1^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.3^{\circ}$
T = 193 K	$h = 0 \rightarrow 16$
$\omega/2\theta$ scans	$k = 0 \rightarrow 12$
Absorption correction: none	$l = -9 \rightarrow 9$
2172 measured reflections	3 standard reflections
2172 independent reflections	every 60 min
1806 reflections with $I > 2\sigma(I)$	intensity decay: 2%
$R_{\rm int} = 0.0000$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_0^2) + (0.084P)^2 + 0.3989P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.151$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
2172 reflections	$\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$
164 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

methods Extinction coefficient: 0.0023 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.12844 (11)	0.65865 (12)	0.4490 (2)	0.0657 (5)
01	0.10747 (10)	0.06648 (13)	0.45018 (19)	0.0394 (4)
C2	0.19141 (14)	0.13786 (18)	0.4958 (2)	0.0324 (4)
C3	0.26801 (14)	0.05896 (18)	0.5490 (2)	0.0338 (5)
C4	0.22829 (15)	-0.06710 (19)	0.5367 (3)	0.0403 (5)
H4	0.2633	-0.1432	0.5656	0.048*
C5	0.13306 (16)	-0.0573 (2)	0.4771 (3)	0.0438 (5)
H5	0.0889	-0.1270	0.4561	0.053*
C6	0.17617 (13)	0.27453 (18)	0.4833 (2)	0.0315 (4)
C7	0.23331 (14)	0.35897 (19)	0.5837 (2)	0.0353 (5)
H7	0.2837	0.3267	0.6610	0.042*
C8	0.21809 (15)	0.4885 (2)	0.5730 (3)	0.0409 (5)
H8	0.2577	0.5455	0.6408	0.049*
C9	0.14411 (17)	0.53215 (19)	0.4616 (3)	0.0422 (5)
C10	0.08431 (16)	0.4532 (2)	0.3621 (3)	0.0421 (5)
H10	0.0329	0.4868	0.2876	0.051*

supplementary materials

C11	0.10057 (15)	0.32439 (19)	0.3728 (3)	0.0364 (5)
H11	0.0601	0.2686	0.3046	0.044*
C12	0.37309 (14)	0.08896 (18)	0.6061 (2)	0.0323 (4)
C13	0.42007 (15)	0.0206 (2)	0.7362 (3)	0.0395 (5)
H13	0.3841	-0.0426	0.7902	0.047*
C14	0.51936 (16)	0.0457 (2)	0.7858 (3)	0.0425 (5)
H14	0.5500	-0.0029	0.8739	0.051*
N15	0.57492 (13)	0.13313 (18)	0.7186 (2)	0.0411 (5)
C16	0.52945 (15)	0.1975 (2)	0.5926 (3)	0.0389 (5)
H16	0.5676	0.2595	0.5405	0.047*
C17	0.43063 (15)	0.17936 (19)	0.5335 (3)	0.0356 (5)
H17	0.4024	0.2284	0.4439	0.043*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0692 (10)	0.0266 (7)	0.0986 (13)	0.0065 (6)	-0.0102 (8)	0.0003 (7)
01	0.0293 (7)	0.0296 (7)	0.0575 (9)	-0.0026 (5)	-0.0079 (6)	-0.0016 (6)
C2	0.0274 (9)	0.0303 (10)	0.0383 (11)	-0.0035 (7)	-0.0038 (7)	-0.0019 (8)
C3	0.0310 (10)	0.0287 (10)	0.0406 (11)	0.0007 (8)	-0.0030 (8)	-0.0003 (8)
C4	0.0357 (11)	0.0289 (10)	0.0554 (13)	0.0023 (8)	-0.0017 (9)	0.0011 (9)
C5	0.0375 (11)	0.0253 (10)	0.0679 (15)	-0.0024 (8)	-0.0004 (10)	-0.0030 (9)
C6	0.0277 (9)	0.0306 (10)	0.0355 (10)	0.0014 (7)	-0.0019 (7)	-0.0001 (8)
C7	0.0308 (10)	0.0344 (11)	0.0392 (11)	0.0012 (8)	-0.0072 (8)	-0.0023 (8)
C8	0.0348 (11)	0.0337 (11)	0.0532 (13)	-0.0034 (8)	-0.0034 (9)	-0.0081 (9)
C9	0.0418 (12)	0.0264 (10)	0.0581 (14)	0.0035 (8)	0.0018 (9)	0.0009 (9)
C10	0.0396 (11)	0.0383 (12)	0.0467 (12)	0.0074 (9)	-0.0085 (9)	0.0033 (9)
C11	0.0327 (10)	0.0341 (10)	0.0410 (11)	0.0004 (8)	-0.0073 (8)	-0.0023 (8)
C12	0.0296 (10)	0.0293 (10)	0.0371 (10)	0.0037 (7)	-0.0035 (7)	-0.0040 (8)
C13	0.0373 (11)	0.0366 (11)	0.0438 (12)	0.0038 (8)	-0.0023 (9)	0.0042 (9)
C14	0.0389 (12)	0.0474 (12)	0.0396 (11)	0.0108 (9)	-0.0073 (9)	0.0016 (9)
N15	0.0345 (9)	0.0451 (11)	0.0420 (10)	0.0036 (7)	-0.0070 (7)	-0.0049 (8)
C16	0.0335 (10)	0.0380 (11)	0.0444 (11)	-0.0027 (8)	-0.0023 (8)	-0.0028 (9)
C17	0.0334 (10)	0.0341 (10)	0.0379 (10)	0.0011 (8)	-0.0071 (8)	0.0017 (8)

Geometric parameters (Å, °)

F1—C9	1.354 (2)	C8—H8	0.9500
O1—C5	1.363 (2)	C9—C10	1.375 (3)
O1—C2	1.377 (2)	C10—C11	1.378 (3)
C2—C3	1.363 (3)	C10—H10	0.9500
C2—C6	1.459 (3)	C11—H11	0.9500
C3—C4	1.432 (3)	C12—C17	1.387 (3)
C3—C12	1.478 (3)	C12—C13	1.393 (3)
C4—C5	1.329 (3)	C13—C14	1.381 (3)
C4—H4	0.9500	C13—H13	0.9500
С5—Н5	0.9500	C14—N15	1.329 (3)
C6—C7	1.397 (3)	C14—H14	0.9500
C6—C11	1.403 (3)	N15—C16	1.339 (3)

С7—С8	1.384 (3)	C16—C17		1.382 (3)
С7—Н7	0.9500	C16—H16		0.9500
C8—C9	1.370 (3)	С17—Н17		0.9500
C5—O1—C2	106.97 (16)	C8—C9—C10		123.0 (2)
C3—C2—O1	109.06 (17)	C9-C10-C11		118.58 (19)
C3—C2—C6	136.31 (18)	С9—С10—Н10		120.7
O1—C2—C6	114.55 (16)	C11—C10—H10		120.7
C2—C3—C4	106.28 (17)	C10-C11-C6		120.82 (19)
C2—C3—C12	129.79 (18)	C10-C11-H11		119.6
C4—C3—C12	123.92 (18)	C6-C11-H11		119.6
C5—C4—C3	106.96 (18)	C17—C12—C13		116.85 (18)
С5—С4—Н4	126.5	C17—C12—C3		123.72 (18)
C3—C4—H4	126.5	C13—C12—C3		119.38 (18)
C4—C5—O1	110.72 (18)	C14—C13—C12		119.4 (2)
C4—C5—H5	124.6	C14—C13—H13		120.3
O1—C5—H5	124.6	C12-C13-H13		120.3
C7—C6—C11	118.14 (18)	N15-C14-C13		124.34 (19)
C7—C6—C2	121.48 (17)	N15-C14-H14		117.8
C11—C6—C2	120.34 (17)	C13-C14-H14		117.8
C8—C7—C6	121.47 (18)	C14—N15—C16		115.86 (18)
С8—С7—Н7	119.3	N15-C16-C17		124.2 (2)
С6—С7—Н7	119.3	N15-C16-H16		117.9
C9—C8—C7	117.94 (19)	C17—C16—H16		117.9
С9—С8—Н8	121.0	C16-C17-C12		119.35 (19)
С7—С8—Н8	121.0	C16-C17-H17		120.3
F1—C9—C8	118.7 (2)	C12-C17-H17		120.3
F1—C9—C10	118.2 (2)			
C5—O1—C2—C3	0.5 (2)	C7—C8—C9—C10		0.7 (4)
C5—O1—C2—C6	-176.93 (18)	F1-C9-C10-C11		179.2 (2)
O1—C2—C3—C4	-0.6 (2)	C8—C9—C10—C11		-1.2 (4)
C6—C2—C3—C4	176.0 (2)	C9—C10—C11—C6		0.3 (3)
O1—C2—C3—C12	178.1 (2)	C7—C6—C11—C10		1.0 (3)
C6—C2—C3—C12	-5.3 (4)	C2-C6-C11-C10		178.8 (2)
C2—C3—C4—C5	0.5 (3)	C2—C3—C12—C17		-40.6 (3)
C12—C3—C4—C5	-178.3 (2)	C4—C3—C12—C17		138.0 (2)
C3—C4—C5—O1	-0.3 (3)	C2—C3—C12—C13		142.0 (2)
C2—O1—C5—C4	-0.1 (3)	C4—C3—C12—C13		-39.4 (3)
C3—C2—C6—C7	-24.2 (4)	C17—C12—C13—C14		0.1 (3)
O1—C2—C6—C7	152.23 (18)	C3—C12—C13—C14		177.75 (19)
C3—C2—C6—C11	158.1 (2)	C12-C13-C14-N15		0.8 (3)
O1—C2—C6—C11	-25.5 (3)	C13-C14-N15-C16		-1.4 (3)
C11—C6—C7—C8	-1.5 (3)	C14—N15—C16—C17		1.2 (3)
C2—C6—C7—C8	-179.28 (19)	N15-C16-C17-C12		-0.4 (3)
C6—C7—C8—C9	0.7 (3)	C13—C12—C17—C16		-0.3 (3)
C7—C8—C9—F1	-179.7 (2)	C3—C12—C17—C16		-177.80 (19)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
	- 11	**		2 11 /1

supplementary materials

C5—H5…F1 ⁱ	0.95	2.32	3.006 (3)	128	
C8—H8···N15 ⁱⁱ	0.95	2.60	3.483 (3)	155	
Symmetry codes: (i) $x, y=1, z$; (ii) $-x+1, y+1/2, -z+3/2$.					

Fig. 2

